The role of smart grids in integrating variable Renewable Energy sources

Dr. Mustapha Taoumi
Energy Technology Expert, EU GCC Clean Energy Technology Network
Content

1. Smart Grids
2. Renewables in Cities
3. Renewables Generation Challenges
4. Renewables, Smart Grids & Storage
5. Key messages
6. Conclusion & Recommendations
How Electricity is Delivered on the Grid

Dissipated (7%, Lost as Heat) = Current^2 X Resistance (P=I^2R)
Smart Grids: Approaches

• Around the world different approaches are being adopted and a wide variety of technologies and services are being demonstrated driven by national and regional business drivers.
• In the US peak load reduction technology and dynamic pricing tariffs are being pursued.
• In Europe emphasis is on improving energy efficiency and reducing emissions through decentralised production.
• In the Asia-Pacific region China is modernising and improving grid reliability and Australia and New Zealand are exploring new techniques for load management.
• Other countries also actively pursuing smart grids are Brazil, Mexico, South Korea and Japan.
Smart Grids: Approaches

• Smart Grid as a new infrastructure for supplying power will leverage ICT technology to improve the reliability of power supplies, promote the mass introduction of renewable energy and optimize energy use by consumers.

• Based on a power supply network which is responsible for supplying power, and a communication network which supervises and controls the facilities that constitute the power supply network, ICT technology will allow power consumers to upgrade their energy management across power generations.

• Overall, Smart Grids will enable high-quality power to be supplied in a highly efficient manner and thus promote a rich, safe and low carbon society.
• Overlay electric grid with networking technology
• Price and Availability of Electricity linked to Usage
• Two-Way Communication
Smart Grids: Concepts & Integration
Advantages for Power Companies

- Enables rapid and automated incident response
- Makes frequency regulation easier and increases grid stability and power quality
- Load Leveling
Advantages to End-Users

- Distributed Generation more cost-effective, can sell back to the grid
- May decrease cost of electricity for consumers
- Enables the smart, programmable operation of important systems or appliances
Smart Meters and Smart Appliances

- The current system of energy metering as well as billing uses electromechanical and somewhere digital meter
- It consumes more time and labour
- There is an issue with billing inaccuracy
- Smart energy meter gives real power consumption as well as accurate billing
- It provides real time monitoring of electricity uses
- It is less time consuming and cost effective

- Smart appliances networked and programmed into grid demand
- Power companies can directly modulate load balance and demand
- Many communication methods, not all require new infrastructure
Smart Grids: Challenges

• New infrastructure to communicate in both directions required
• Electricity prices less transparent for consumer, adjustment from fixed price to real-time pricing
• Security concerns
• Behavioral Changes and Data Management Required…
Renewables in Cities

- In the Middle East about 50-70 % energy is consumed by buildings in a city

- Green buildings integrated with Renewable Energy and energy conservation systems can save about 30 – 40% of conventional energy used in building
Renewables in Cities

✓ Solar power generation in City & offsite
✓ Solar Water Heaters for hot water
✓ Solar PV Rooftop systems for electricity
✓ Solar street lightings
✓ Solar pumps for water lifting
✓ Solar traffic signals, solar road studs/blinkers
Grid connected SPV Roof Top Systems

World-wide

- Germany, USA and Japan are leaders in adopting grid-connected SPV Rooftop systems.
- Germany has highest PV installed capacity of over 38 GW of which 71% is in rooftop segment (2015).
- Italy has 12.7 GW PV installation with over 60% rooftop systems
- In Europe of total 50.6 GW PV installation, over 50% in rooftop segment.
Grid connected SPV Roof Top Systems

- Solar systems installed on rooftops of residential, commercial, institutional & industrial buildings
- Electricity generated could be fed into the grid at regulated feed-in tariffs or used for self consumption with net-metering approach
Grid connected SPV Roof Top Systems

Advantages

• Decrease in transmission and distribution losses
• Low gestation time
• No requirement of additional land
• Improvement of tail-end grid voltages and reduction in system congestion with higher self-consumption of solar electricity
• Local job creation
• Reduction of power bill by supplying surplus electricity to local electricity supplier
• Battery elimination makes easy installation and reduced cost of system
Grid connected SPV Roof Top Systems
Advantages
Grid connected SPV Roof Top Systems - Oman Case

Peak reduction for the expected case scenario

5% = 450MW
10% = 900MW
15% = 1350MW
Typically, critical periods occur only 1-2% of the hours per year, yet the infrastructure must be maintained to supply it. The whole system is engineered for these peak periods, and about 20% of the entire grid capacity exists only to manage a few hours a year of peak load. If we could spread out that peak load, we could get far more from existing infrastructure.
Renewable Generation Intermittency

- Wind, Solar and hydropower generation depend on environmental conditions
- Grid must be able to dispatch storage or generation quickly to accommodate sudden changes
- Conventional power generation has a “ramp-up” time before reaching maximum generation
Renewables Generation Challenges

• How does the power company know how much to produce?
• Electrical Power cannot easily be stored in large quantities, yet
• The load must be balanced across a grid
• Reliability and Power Quality
• Advanced Electricity Pricing (Real-Time Pricing)
• Renewable Resource Forecasting
Renewables, Storage & Smart Grids

- New sensors - synchrophasors
- Renewable energy and electric storage
- Integrated communication systems
- Distributed power generation
- Demand response utility rates
- Smart meters and building automation

Smart grid components
Renewables, Storage & Smart Grids

- Efficient Building Systems
- Utility Communications
- Dynamic Systems Control
- Distribution Operations
- Data Management
- Internet
- Consumer Portal & Building EMS
- Advanced Metering
- Plug-In Hybrids
- Distributed Generation & Storage
- Renewable PV
- Smart End-Use Devices
- Efficient Building Systems
- Control Interface
- Internet
Renewables, Storage & Smart Grids

Visions of the electricity system. Present and future flows

The four functions of smart grid technologies

Source: IRENA 2013
Key messages

- **Technologies, Systems and Services** should be **developed** to provide more flexibility, transparency and sustainability.
- Increase **awareness** about the benefits of Smart Grids & Storage (Utilities & End Users)
- The successful implementation of smart grid technologies for renewables requires **changes in policy** and regulatory frameworks to address non-technical issues.
- Incorporation into **procurement** processes/ Auctions (pilot projects,....)
Conclusion & Recommendations

• **Changes** will be essential to transform the electricity system and create the grid infrastructure to support a **sustainable energy future**.

• Technology cooperation is key to promote **innovation** and **sustain** the emerging Renewables Smart Grids market.

• The **EU GCC Clean Energy Technology Network** stands ready to cooperate with GCC countries
Thank you!

m.taoumi@eugcc-cleanergy.net

m.taoumi@gmail.com