

Direct electrocatalytic conversion of CO₂ into chemical energy carriers in a co-ionic membrane reactor

José M. Serra

This project has received European Union's Horizon 2020 research and innovation funding under grant agreement Nº 838077.

Context

CO₂ catalytic conversion combined solution for energy storage and carbon footprint reduction

Context

Current CO₂-to-fuel technologies

Multi-step approach involves a sequence of separated processes

High costs up to 300 €/ MWh CAPEX and 750 €/MWh OPEX

Highly energy intensive with overall energy efficiency values around 60%

eCOCO₂ Approach

(Intensified) Single-step electrolysis and one-pot catalytic conversion

Set-up a technology for conversion of CO₂, using renewable electricity and water steam, to carbon-neutral jet fuel, at high energy efficiency, very high CO₂ conversion rate and moderate-to-low cost.

eCOCO₂ Approach

Single-step electrolysis and one-pot catalytic conversion

eCOCO₂ Approach

HC: hidrocarbons (intermediate: C2-C10; upgrated: C8-C16)

- E. Vøllestad, et al. "Mixed Proton and Electron Conducting Double Perovskite Anodes for Stable and Efficient Tubular Proton Ceramic Electrolysers", **Nature Materials 2019**
- Heat integration
- Equilibrium Shift Water control
- Catalysis

Objectives

Partners

The consortium is formed by well balance of reference research and academic institutions:

and leader companies:

CoorsTek.

HERA

Team

5 Women WP Leaders

Challenges and Opportunities for CO₂ utilization

- Economic sustainability of the process
 - Associated costs, including capital costs and operating costs (mainly energy consumption), and the expected savings and revenues.
- Dependence on capture technologies
- Public perception and acceptance of the technology
- Regulatory barriers. Future of C-based fuels?
- Will CO₂ be the raw materials of chemistry in future?

From industry o from Air? And when?

Need to align: C-addicted industry, Energy companies, Bulk chemistry

Thanks! Questions?

